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Abstract. We propose and test analytic equations for approximating expected
fiducial and surface target registration error (TRE). The equations are derived
from a spatial stiffness model of registration. The fiducial TRE equation is equiv-
alent to one presented by [1]. We believe that the surface TRE equation is novel,
and we provide evidence from computer simulations to support the accuracy of
the approximation.

1 Introduction

Many forms of computer-assisted surgery use registration to align patient anatomy to
medical imagery. Quantifying registration error and its possible effects on the surgical
outcome are of great interest to practitioners of computer-assisted surgery. One task-
specific method of measuring registration error is to estimate the target registration
error (TRE), which is defined as the error between a measured anatomical target under
the registration transformation and its corresponding location in the medical image.

Simulation studies of fiducial TRE have been described in [2,3,4,5] and elsewhere.
A statistical derivation of fiducial TRE was described in [1]. Equations predicting sur-
face TRE, where points are measured from a surface and aligned to a model of the
surface, have not yet been described, to the best of our knowledge. In this article we
show that our spatial stiffness models of fiducial and surface registration yield analytic
expressions for TRE that accurately match simulation results.

2 Spatial Stiffness of a Passive Mechanical System

The background material, from the robotics literature, is taken from our previous
work [6].

A general model of the elastic behavior of a passive unloaded mechanism is a rigid
body that is suspended by linear and torsional springs, which leads to analysis of the
spatial stiffness or compliance of the mechanism. For a passive mechanism in local
equilibrium, a twist displacement t of a rigid body is related to a counteracting wrench
force w by a 6 × 6 spatial stiffness matrix K:

w = Kt =
[ A B
BT D

]
t (1)

where A,B, and D are 3×3 matrices. The twist is a vector t = [υT ωT ]T where υT =
[vx vy vz ] is linear displacement and ωT = [ωx ωy ωz] is rotational displacement. The
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wrench is a vector w = [fT τT ]T where fT = [fx fy fz] is force and τ T = [τx τy τz ]
is torque. Equation 1 is simply a general, vectorial expression of Hooke’s Law.

K is a symmetric positive-definite matrix for stable springs and small displacements
from equilibrium. The eigenvalues of K are not immediately useful because their mag-
nitudes change with the coordinate frame used to define K; however, it can be shown [7]
that the eigenvalues of

KV = D − BT A−1B and CW = A−1 (2)

are frame invariant. The eigenvalues μ1, μ2, μ3 of KV are the principal rotational stiff-
nesses, and the eigenvalues σ1, σ2, σ3 of C−1

W are the principal translational stiffnesses.
The screw representation of a twist is a rotation about an axis followed by a transla-

tion parallel to the axis. The screw is usually described by the rotation axis, the net ro-
tation magnitude M , with the independent translation specified as a pitch, h, that is the
ratio of translational motion to rotational motion. For a twist h=ω ·υ/‖ω‖2, M =‖ω‖,
and the axis of the screw is parallel to ω passing through the point q = ω ×υ/‖ω‖2. A
pure translation (where ω = 0) has h = ∞ and M = ‖υ‖, with the screw axis parallel
to υ passing through the origin. A unit twist has magnitude M = 1, in which case, for
ω �= 0, h = ω · υ and q = ω × υ. For a small screw motion with M = α and ω �= 0,
a point located at a distance ρ from the screw axis will be displaced by length

l ≈ |α|
√

ρ2 + (ω · υ)2 (3)

Equation 3 is the basis of the frame-invariant quality measure for compliant grasps
described by [7]. Because the principal rotational and translational stiffnesses have dif-
ferent units, they cannot be directly compared to one another. One solution is to scale
the principal rotational stiffnesses by an appropriate factor (see [7] for details) to yield
the so-called equivalent stiffnesses, μeq,i:

μeq,i = μi/(ρ2
i + (ωi · υi)2) i = 1, 2, 3 (4)

where, μi is an eigenvalue of KV with an associated eigenvector ωi, and ρi is the
distance between the point of interest and the screw axis of the twist [υT

i ωT
i ]T .

2.1 Fiducial Registration Stiffness Matrix

We previously described a spatial stiffness model of fiducial registration where each
fiducial marker was attached to its noise-free location with a linear spring [8]. The
resulting stiffness matrix for fiducial registration with N fiducials centered at the origin
was shown to be

K =

⎡

⎢
⎢
⎣

NI3×3 −[Π×]

[Π×]
∑N

i=1

⎡

⎣
y2

i + z2
i −xiyi −xizi

−xiyi x2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i

⎤

⎦

⎤

⎥
⎥
⎦ =

[
A B
BT D

]
(5)

where pi = [xi yi zi ]T is the location of the ith fiducial and the matrix BT = [Π×]

is the cross-product matrix

[
0 zi −yi

−zi 0 xi
yi −xi 0

]
such that [Π×]u = Π × u. If the fiducials
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are centered at the origin then B = BT = 0 which is very unusual for stiffness ma-
trices [8]. Because the principal stiffnesses are invariant under rigid coordinate frame
transformation we can assume that the fiducials are centered at the origin without loss
of generality. Under this assumption, the principal rotational stiffnesses are the eigen-
values of KV = D − BT A−1B = D. The matrix D is the inertia tensor for a system
of N point particles of unit mass [9]; thus, the rotational stiffnesses are the principal
moments of inertia and the eigenvectors are the principal axes.

2.2 Surface Registration Stiffness Matrix

Our stiffness model for surface registration also used linear springs attached to the
registration point, but the other end of the spring was allowed to slide to the near-
est corresponding surface point when the registration points were displaced by a small
amount [6]. The simplest expression for the stiffness matrix for surface registration with
N surface registration points was shown to be

K =
N∑

i=1

[
ni

pi × ni

] [
ni pi × ni

]
=

[
A B
BT D

]
(6)

where pi is the ith surface registration point and ni is its associated unit normal vector;
expanding Equation 6 provides some intuition for optimizing registration point selec-
tion [6].

3 Target Registration Error

We hypothesize that TRE can be estimated by considering a constant amount of work
done (energy), c, and calculating the displacement of the system. The work done is
taken to be the sum c = cδ + cr of two components cδ = cr representing the energies
required to respectively translate and rotate the system. The magnitude of the translation
and rotation are related to the error in localizing a fiducial marker or surface registration
point. We refer to these errors are fiducial localization error (FLE) and point localization
error (PLE), and we characterize them by their variances s2

FLE and s2
PLE. We explore our

hypothesis first for the case of fiducial registration.

3.1 Fiducial Registration TRE

Suppose that the fiducial markers are translated by an amount αδ1 in a direction parallel
to υ1 where υ1 is the eigenvector associated with the principal translational stiffness
σ1. Such a translation will induce a TRE of magnitude αδ1 . The work done by this
translation is cδ1 = 1

2σ1α
2
δ1

; simple rearrangement yields α2
δ1

= 2cδ1
σ1

. A similar argu-
ment can be used for translations in the directions parallel to υ2 and υ3. The squared
translational TRE is α2

δ = α2
δ1

+ α2
δ2

+ α2
δ3

= 2cδ1
σ1

+ 2cδ2
σ2

+ 2cδ3
σ3

. It seems reason-
able to assume that the work done for each direction is equal if the FLE is isotropic;
substituting cδ1 = cδ2 = cδ3 = cδ

3 and σ1 = σ2 = σ2 = N yields

α2
δ =

2cδ

N
(7)
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Suppose the system is rotated about the axis ω1 where ω1 is the eigenvector associ-
ated with the principal rotational stiffness μ1. Such a rotation will induce a TRE; let the
magnitude of the TRE be αr1 . The work done by this rotation is cr1 = 1

2μeq1
α2

r1
; simple

rearrangement yields α2
r1

= 2cr1
μeq1

. Using a similar argument for rotations about ω2 and

ω3 leads to a total squared displacement of α2
r = α2

r1
+α2

r2
+α2

r3
= 2cr1

μeq1
+ 2cr2

μeq2
+ 2cr3

μeq3

Recall that Equation 4 states μeq,i = μi/(ρ2
i + (ωi · υi)2), where μi is the principal

rotational stiffness, ωi is the eigenvector associated with μi, υi is the linear displace-
ment component of the twist vector ti = [υT

i ωT
i ]T , and ρi is the distance between

the target and the screw axis of ti. It can be shown that υT
i and ωT

i must be mutually
perpendicular if B = 0 [10]; therefore ωi · υi = 0 and μeq,i = μi/ρ2

i . Assuming the
work done is evenly divided among the three rotations and substituting for μeq,i gives
the squared rotational TRE as

α2
r =

2crρ
2
1

3μ1
+

2crρ
2
2

3μ2
+

2crρ
2
3

3μ3
(8)

Adding the two components are in quadrature and taking the square root yields the root
mean squared TRE

TRE =
√

α2
δ + α2

r =

√
2cδ

N
+

2crρ2
1

3μ1
+

2crρ2
2

3μ2
+

2crρ2
3

3μ3
(9)

Amount of Work Done. The amount of work done cδ = cr must be defined to compute
an estimate of TRE. It is easiest to compute the work done by translation. Consider the
squared displacement of the center of mass α2

com of a system of N points where the
location of each point is subject to zero mean, isotropic noise with variance s2. If the
centroid of the noise-free points is at the origin the expected value of α2

com is

E[α2
com] = E[‖P‖2] = E[P

2
x + P

2
y + P

2
z ] = E[P

2
x] + E[P

2
y] + E[P

2
z] (10)

where P = [P x P y P z]T is the mean of the noisy point locations. Two statistical facts
are ([11])

E[P x] = E[P y] = E[P z] = 0 (11)

Var(P x) = Var(P y) = Var(P z) =
s2

3N
(12)

Where Var denotes the variance. Using Equation 11, Equation 10 can be rewritten as

E[α2
δ ] = E[P

2
x] + E[P

2
y] + E[P

2
z]

= E[(P x − E[P x])2] + E[(P y − E[P y])2] + E[(P z − E[P z ])2] (13)

For any random variable X the variance of X is defined as Var(X) = E[(X − E[X ])2]
Thus Equation 13 becomes

E[α2
com] = Var(P x) + Var(P y) + Var(P z) =

s2

N
(14)
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To compute the energy associated with the displacement of the center of mass we con-
sider the work done by a single spring with spring constant kcom = N attached to the
center of mass. The expected work done is

E[ccom] =
1
2
kcomE[α2

com] =
1
2
s2 (15)

Substituting ccom = cδ and s2 = s2
FLE into Equation 15 gives the expected work done

by translation induced by fiducial localization noise as

E[cδ] =
1
2
s2

FLE (16)

Substituting cδ = cr and Equation 16 into Equation 9 gives the TRE for isotropic noise
as

TRE = sFLE

√
1
N

+
ρ2
1

3μ1
+

ρ2
2

3μ2
+

ρ2
3

3μ3
(17)

Recall that the μi are the principal moments of inertia of the fiducial configuration;
squaring Equation 17 yields Equation 46 from [1] for the expected value of TRE2.

3.2 Surface Registration TRE

The development of the equations for estimating TRE for surface-based registration is
similar to that presented in Section 3.1 for fiducial registration. Rather than repeating
large sections of text, we refer the reader to Section 3.1 for details, and present only the
relevant equations in this section.

By considering the work done induced by translation along the three principal axes
of translation, the squared translational TRE can be written as

α2
δ =

2cδ

3

(
1
σ1

+
1
σ2

+
1
σ3

)
(18)

By considering the work done by rotation about the three principal axes of rotation, the
squared rotational TRE can be written as

α2
r =

2cr

3

(
ρ2
1 + (ω1 · υ1)2

μ1
+

ρ2
2 + (ω2 · υ2)2

μ2
+

ρ2
2 + (ω3 · υ3)2

μ2

)
(19)

Addition of Equations 18 and 19 in quadrature yields our estimate for surface registra-
tion TRE.

Amount of Work Done. The same argument used for defining the work done in the
fiducial registration case (Section 3.1) applies here. The amount of work done by trans-
lation is cδ = 1

2s2
PLE. Equating the energies of translation and rotation, and substituting

into Equations 18 and 19 gives the TRE for isotropic noise as

TRE =
sPLE√

3

[ (
1
σ1

+
1
σ2

+
1
σ3

)
+

(
ρ2
1 + (ω1 · υ1)2

μ1
+

ρ2
2 + (ω2 · υ2)2

μ2
+

ρ2
2 + (ω3 · υ3)2

μ2

)] 1
2

(20)
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Table 1. Ellipsoid registration point parameters (Δ = dπ/2)

1 2 3 4 5 6 7 8 9
u −π

2
π
2 − Δ π

2 + Δ
2 0 0 π −π

2
π
2

π
2

v 0 0 0 −π
2 + Δ π

2 − Δ π
2 − Δ

2 −π
2 + Δ −π

2 + Δ π
2 − Δ

4 Methods and Results

We tested our TRE equations using computer simulations where registration transfor-
mations were computed using registration features (fiducials and model surface points)
contaminated with isotropic localization noise. Our fiducial registration experiments
were similar to those described in [2]. Because the square of Equation 17 is equivalent
to Equation 46 from [1] we were not surprised that there was excellent agreement be-
tween the simulated RMS TRE and the predicted TRE. To conserve space for the more
interesting surface registration simulations, we will omit the results from the fiducial
simulations and refer the reader to [10] for results and discussion.

4.1 Surface Registration

We ran simulations of surface registration TRE using a variety of surfaces: The surfaces
used were an ellipsoid, and models of two cadaver femora and the radius of a patient
who underwent computer-assisted surgery. The simulations used the following steps:

1. Normally distributed noise was drawn from N (0, s2
PLE/3) and added to the x, y,

and z components of the each surface registration point.
2. The noisy point locations were registered to the surface using ICP [12]. ICP was

initialized with the true registration transformation (the identity) and was run to
convergence in RMS error (tolerance of 10−9 mm, maximum 100,000 iterations).

3. The registration was applied to the set of target locations. The displacement of a
target under the registration transformation was the target registration error.

The ellipsoid had the parametric form

p(u, v) = [150 cosv cosu 50 cos v sin u 25 sin v]T , 0 ≤ u ≤ π, −π
2 ≤ v ≤ π

2

and its registration points were parameterized by a scalar quantity d where 0 ≤ d ≤
1; the 9 registration points used can be computed using the values shown in Table 1.
At d = 0 all of the points lie in the plane x = 0, which is the most circular cross
section of the ellipsoid. The results for the ellipsoid simulations are shown in Figure 1.
The predicted value of TRE agreed with the simulation results except for small values
of d. The predicted TRE was large because there were small principal stiffnesses for
these point configurations. The points were still close to the surface of the ellipsoid,
however, so the ICP algorithm did not diverge far enough from the true registration
transformation to produce the very large values of TRE predicted by the stiffness model.
The predicted values of TRE as a function of target location and noise magnitude agree
with the simulation results with an error of less than 2% of simulated RMS TRE.
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Fig. 1. Estimated (solid curve) and simulated TRE (symbols) for the ellipsoid simulations; error
bars shown at ±1 standard deviation of RMS TRE. (Left) TRE as a function of registration point
location (sPLE = 0.5 mm, target [50 25 15]T ). (Middle) TRE as a function of target location
along the line [−150 − 50 − 25]T + t[300 100 50]T (sPLE = 0.5 mm, d = 0.5). (Right) TRE
as a function of noise magnitude (d = 0.5, target location [50 25 15]T ).

Fig. 2. Models, registration points (dark spheres), and targets (dark cubes) used for the bone
surface TRE experiments. (Right) Targets are distributed along the mechanical axis of the femur
for the distal femur experiment; the mechanical axis is clinically relevant in knee arthroplasty.

Target points and registration points used for the bone model experiments are shown
in Figure 2. We varied the number of registration points used for the radius and proxi-
mal femur, and we varied the noise magnitude for the distal femur; results are shown in
Figure 3. The predicted TRE always fell within one standard deviation of TRE magni-
tude for the radius and proximal femur experiments; the agreement between predicted
and simulated TRE improved as the number of registration points increased. For the
distal femur experiment using 14 registration points carefully selected from regions of
low curvature the predicted TRE agreed with the simulated TRE with an error of less
than 4% over a wide range of target locations and noise magnitude.

5 Discussion and Conclusion

We have presented analytic expressions of expected root mean square fiducial and sur-
face target registration error. The derivation for fiducial TRE is novel and the resulting
equation is equivalent to one published by [1]. Equation 20 for approximating surface
TRE is unique as far as we know. The estimated surface TREs were in good agreement
with our simulated values.

The reliability of Equation 20 can be compromised in realistic situations because of
the strong dependence on the normal vectors ni. We would caution against relying on
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Fig. 3. Estimated (solid curve) and simulated TRE (symbols) for the bone surface simulations;
error bars shown at ±1 standard deviation of RMS TRE. (Left) TRE as a function of the number
of registration points for the distal radius. (Middle) TRE as a function of the number of regis-
tration points for the proximal femur. (Right) TRE as a function of target location along the line
of the mechanical axis (parameterized by t) and noise magnitude for the distal femur experiment
(sPLE = 0.35, 0.75, 1.0 mm).

Equation 20 if points are selected from surfaces with high curvature features. Neverthe-
less, we believe that Equation 20 is a useful tool for studying surface-based registration
and we have already applied it the optimization of registration point selection [10].
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